罗丹锋
发布时间: 2020-10-01 浏览次数: 269



教师简介

罗丹锋,男,湖北潜江人,汉族,博士研究生,副教授,硕士生导师。

邮箱:dfluo@gzu.edu.cn

主要经历


一.主要学习经历

(1)2015-09  2020-06, 湖南师范大学, 应用数学, 博士

(2)2010-09  2014-06, 南阳理工学院, 应用数学, 学士 

二.主要工作经历

20209月至今,贵州大学,数学与统计学院。

主要贡献


(1)本科生课程:《数学分析》《数学物理方程》《高等数学》。

(2)研究生课程:《分数阶微分方程理论与应用》《常微分方程泛函方法》

现主要从事分数阶微分方程稳定性,分数阶随机控制,随机微分方程平均原理,以及切换系统镇定问题的研究。

一.主持或参加科研项目

(1) 国家自然科学基金委员会,地区科学基金项目,12361035,非瞬时脉冲条件下分数阶随机系统的稳定性及其相关研究,在研,主持。

(2)国家自然科学基金委员会,面上项目,12071123,随机偏微分方程的正则性与遍历性研究,在研,参与。

(3)贵州省自科项目,一般项目,QKHJC-ZK[2024]YB061,分数阶系统的Ulam-Hyers稳定性研究,在研,主持。

(4)贵州大学,一流学科人才计划项目,202002,脉冲作用下的分数阶随机动力系统解的研究,在研,主持。

二.学术兼职

(1)    美国《数学评论》(Mathematical Reviews) 评论员。

(2)    国际SCI 期刊特刊客座编辑:

· Special Issue in Fractal and Fractional Analysis of Fractional Stochastic Differential Equations and Their Applications.

三.科研论文(部分)

[1]       Zou J., Luo D.F.*, On the averaging principle of Caputo type neutral fractional stochastic differential equations, Qualitative Theory of Dynamical Systems, 2024, 23(2), 82.

[2]       Luo D.F., Wang X., Caraballo T., Zhu Q.X.*, Ulam-Hyers stability of Caputo-type fractional fuzzy stochastic differential equations with delay, Communications in Nonlinear Science and Numerical Simulation, 2023, 121, 107229, 17pp.

[3]       Tian M.Q.,Luo D.F.*, Finite-time stability results for fuzzy fractional stochastic delay system under Granular differentiability concept, Iranian Journal of Fuzzy Systems, 2023, 20(5), 135-150.

[4]       Luo D.F., Tian M.Q., Zhu Q.X.*, Some results on finite-time stability of stochastic fractional-order delay differential equations, Chaos Solitons and Fractals, 2022, 158: 111996.

[5]       Wang X., Luo D.F.*, Zhu Q.X., Ulam-Hyers stability of caputo type fuzzy fractional differential equation with time-delays, Chaos Solitons and Fractals, 2022, 156: 111822.

[6]       Luo D.F., Zhu Q.X.*, Luo Z.G., A novel result on averaging principle of stochastic Hilfer-type fractional system involving non-Lipschitz coefficients, Applied Mathematics Letters, 2021, 122: 107549.

[7]       Luo D.F.*, Abdeljawad T.,Luo Z.G., Ulam-Hyers stability results for a novel nonlinear nabla Caputo fractional variable-order difference system, Turkish Journal of Mathematics, 2021, 45(1): 456-470.

[8]       Luo D.F., Zhu Q.X.*, Luo Z.G., An averaging principle for stochastic fractional differential equations with time-delays, Applied Mathematics Letters, 2020, 105: 106290.

[9]       Tian M.Q.,Luo D.F.*, Existence and finite-time stability results for impulsive Caputo-type fractional stochastic differential equations with time delays,‏ Mathematica Slovaca, 2023, 73(2), 387-406.

[10]    Zou J., Luo D.F.*, Li M.M., The existence and averaging principle for stochastic fractional differential equations with impulses, Mathematical Methods in the Applied Sciences, 2023, 46(6), 6857-6874.

[11]    Luo D.F., Luo Z.G.*Existence and Hyers-Ulam stability results for a class of fractional order delay differential equations with non-instantaneous impulses, Mathematica Slovaca, 2020, 70(5), 1231-1248.

[12]    Luo D.F., Luo Z.G.*, Existence of solutions for fractional differential inclusions with initial value condition and non-instantaneous impulses, Filomat, 2019, 33(17), 5499-5510.

[13]    Huang J.Z., Luo D.F.*, Existence and controllability for conformable fractional stochastic differential equations with infinite delay via measures of noncompactness, Chaos, 2023, 33(1): 013120, 14 pp.

[14]    Huang J.Z., Luo D.F.*, Relatively exact controllability for higher-order fractional stochastic delay differential equations, Information Sciences, 2023, 648, 119631.

[15]    Huang J.Z., Luo D.F.*, Zhu Q.X., Relatively exact controllability for fractional stochastic delay differential equations of order (1,2], Chaos, Solitons and Fractals, 2023, 170, 113404.

[16]    Huang J.Z., Luo D.F.*, Relatively exact controllability of fractional stochastic delay system driven by Lévy noise, Mathematical Methods in the Applied Sciences, 2023, 46(9), 11188-11211.

[17]   Yuan Y.H., Luo D.F.*,Relatively exact controllability of fractional stochastic neutral system with two incommensurate constant delays, Mathematical Methods in the Applied Sciences, 2024, 1-18, DOI 10.1002/mma.9932.  

详情可见:https://www.researchgate.net/profile/Danfeng-Luo?ev=prf_overview


 
友情链接:
 
Copyright◎ 2016 math.gzu.edu.cn All Rights Reserved 贵州大学数学与统计学院 版权所有
邮编:550025 Tel:0851-83627662(办公室); 0851-83627557(教学科研科(含研究生管理)); 0851-83620186(学生科(本科))
Baidu
map